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Many physical systems are described by nonlinear differential
equations that are too complicated to solve in full. A natural way
to proceed is to divide the variables into those that are of direct
interest and those that are not, formulate solvable approximate
equations for the variables of greater interest, and use data and
statistical methods to account for the impact of the other vari-
ables. In the present paper we consider time-dependent problems
and introduce a fully discrete solution method, which simplifies
both the analysis of the data and the numerical algorithms. The
resulting time series are identified by a NARMAX (nonlinear auto-
regression moving average with exogenous input) representation
familiar from engineering practice. The connections with the Mori–
Zwanzig formalism of statistical physics are discussed, as well as an
application to the Lorenz 96 system.
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There are many time-dependent problems in science, where
the equations of motion are too complex for full solution,

either because the equations are not certain or because the
computational cost is too high, but one is interested only in the
dynamics of a subset of the variables. Such problems appear, for
example, in weather and climate modeling, e.g., refs. 1, 2; in
economics, e.g., ref. 3; in statistical mechanics, e.g., refs. 4, 5; and
in the mechanics of turbulent flow, e.g., refs. 6, 7. In these set-
tings it is natural to look for simpler equations that involve only
the variables of interest, and then use data to assess the effect of
the remaining variables on the variables of interest in some ap-
proximate way. In the present paper we focus on stochastic
methods for doing this, with data coming either from experi-
mental observations or from prior numerical calculations.
Consider a set of differential equations of the form

d
dt

x=Rðx, yÞ,     d
dt

y= Sðx, yÞ, [1]

where t is the time, x= ðx1, x2, . . . , xmÞ is the vector of resolved
variables, and y= ðy1, y2, . . . , yℓÞ is the vector of unresolved vari-
ables, where ℓ is not necessarily finite, with initial data xð0Þ= α,
yð0Þ= β. Consider a situation where this system is too complicated
to solve, but where data are available, usually as sequences of mea-
sured values of x, assumed here to be observed with negligible
observation errors. One can write Rðx, yÞ in the form

Rðx, yÞ=R0ðxÞ+ zðx, yÞ, [2]

where R0 approximates Rðx, yÞ in some sense and is such that one
is able to solve the equation

d
dt

x=R0ðxÞ. [3]

The remainder zðx, yÞ=Rðx, yÞ−R0ðxÞ is the contribution of the
unresolved variables to the equation for x and must be taken into
account. It has been variously called “unresolved tendency”

(8, 9), “model error” (10, 11), or “model noise” (12); we call it
simply the “noise.” In the present paper we do not discuss gen-
eral methods for constructing R0; they depend on practical con-
siderations which differ from case to case.
A usual approach to the problem of computing x is to identify z

from data (8, 13, 14), i.e., find a concise approximate represen-
tation ẑ of z that can be evaluated on the computer, and then
solve the equation

d
dt

x=R0ðxÞ+ ẑ. [4]

When ẑ is a stochastic process, this is a “stochastic parametrization.”
Eq. 4 is an instance of a dimension-reduced equation, in the sense
that it has fewer variables than Eq. 1. However, this approach has
some difficulties. In general the available data are measurements of
x, not of z; to find z so that it can be identified one has to use Eq. 2,
and in particular differentiate x numerically, which is generally im-
practical or inaccurate because z may have high-frequency compo-
nents or fail to be sufficiently smooth, and because the data may not
be available at sufficiently small time intervals (an illuminating
analysis in a special case can be found in refs. 15, 16). If one can
successfully identify z, Eq. 4 generally becomes a nonlinear stochas-
tic differential system, where in general ẑ at a given time depends on
earlier values of x and ẑ (see the next section), which may be hard to
solve with sufficient accuracy (17, 18).
Here we take a different approach. We note that Eqs. 3 and 4 are

always solved on the computer, i.e., in discrete form, that the data
are always given at a discrete collection of points, and that one
wishes to determine x but in general one is not interested in de-
termining z. We can therefore avoid the difficult detour through a
continuous z followed by a discretization, by working entirely in a
discrete setting as follows. We can pick once and for all a particular
accurate discretization of Eq. 3 with a particular time step δ,

xn+1 = xn+ δRδðxnÞ,

where Rδ is obtained, for example, from a Runge–Kutta method,
and where n indexes the result after n steps. As in the continuous
case, this equation has to be corrected to account for the impact of
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the unresolved variables, and here also for the possible inaccur-
acy of the numerical scheme. We use the data to identify the
discrepancy sequence, zn+1δ = ðxn+1 − xnÞ=δ−RδðxnÞ, which is avail-
able from x data without approximation. This is equivalent to iden-
tifying the following reduced system:

xn+1 = xn + δRδðxnÞ+ δzn+1δ , [5]

which constitutes a discrete stochastic parametrization.
We assume, as one does in the continuous case, that the system

under consideration is ergodic, so that its long-time statistics are
stationary. The sequence znδ becomes a stationary time series, which
we represent by the widely used NARMAX (nonlinear autore-
gression moving average with exogenous inputs) representation,
with x as an exogenous input. This representation makes it possible
to integrate the numerical scheme into the reduced equations, and
to take into account efficiently the non-Markovian features of the
reduced system as well as model and numerical errors. There is no
stochastic differential system to solve. It is important to note that
identifying zδ can be very different from identifying the continuous z.
The question, in what sense does zδ approximate z, is not relevant,
because the goal is to calculate x, and zδ is sufficient for the purpose.
Note that zδ should be a good approximation of z if Eq. 3 can be
effectively approximated by a first-order Euler scheme. For prac-
tical purposes, the discrete stochastic parametrization accom-
plishes everything that would be accomplished by a successful
continuous parametrization followed by an accurate approximation.

NARMAX Representation
We represent the discrete-time process zδ in the reduced system
[5] as a time series in the form of a variant of the NARMAX
representation (19–22). The generality of the NARMAX ap-
proach will be increasingly important as model reduction meth-
ods are applied to more complex problems. To simplify notation,
from now on we drop the subscript δ in zδ that distinguishes it
from the remainder z.
Eq. 5 becomes

xn+1 = xn + δRδðxnÞ+ δzn+1,     zn+1 =Φn+1 + ξn+1, [6]

for n= 1,2, . . ., where the ξn+1 are independent Gaussian random
variables with mean zero and variance σ2, and Φn is the sum:

Φn = μ +
Xp

j=1

ajzn−j +
Xr

j=1

Xs

i=1

bi, jQi
�
xn−j

�
+

Xq

j=1

cjξn−j. [7]

μ, σ2 and faj, bi,j, cjg are parameters to be inferred from data, and
the exogenous inputs Qi,   i= 1, . . . , s are functions to be deter-
mined; to simplify the notations, Eq. 7 has been written as if Eq.
6 were scalar. This is the NARMAX representation of x and z. In
Eq. 7, the terms in z are the autoregression part of order p, the
terms in ξ are the moving average part of order q. Note that if we
substitute zn = ðxn − xn−1Þ=δ−Rδðxn−1Þ into [7] and the second
equation in [6], we obtain a NARMAX representation for x. A
suitable choice of the functions Qi will be discussed in the context
of a specific example and will connect the representation to the
approximation of Eq. 3.
To implement the NARMAX representation, one has to

determine its structure and estimate the parameters. Although
NARMAX has been widely studied (see, e.g., refs. 19, 23–26
and references therein), one should use the earlier work with
caution, especially in the detection of structure by least-squares–
based methods, because in the standard NARMAX, unlike here,
the exogenous process is independent of the noise process.
Suppose one has selected a structure, that is, chosen the functions
Qi and the orders ðp, r, s, qÞ in the representation [7]. Because the

representation is linear in the parameters θ= ðμ, aj, bi,j, cj, σ2Þ,
these parameters can be estimated using conditional likelihoods
as follows. The sequence fzng for n= 1,2, . . . ,N can be computed
from the data using the first equation in [6]. Once the values of
ξ1, . . . , ξq are known, the noise sequence ξn for q+ 1≤ n≤N
can be computed from ξn = zn −Φn. This leads to the conditional
log-likelihood of the observations xn for q+ 1≤ n≤N (up to a
constant):

l
�
θjξ1, . . . , ξq�=−

XN

n=q+1

��zn −Φn
��2

2σ2
−
N − q
2

ln σ2.

The log-likelihood lðθjξ1, . . . , ξqÞ is quadratic in the parameters
other than σ2, its gradient can be easily computed, and the max-
imum likelihood estimator (MLE) can be obtained by standard
gradient-based optimization methods, such as the quasi-Newton
method. If the reduced system is ergodic, the MLE is asymp-
totically consistent, and the initial values of ξ1, . . . , ξq do not
affect the result (22, 25). For convenience, we set ξ1 = ...=
ξq =E½ξ1�= 0.
We remark that for the above Gaussian likelihood, the MLE is

the same as the least-squares estimator for the parameters, which
has been widely used in control (23, 24). As shown in ref. 23, the
above estimation procedure can be made recursive; also, the noise
sequence need not be Gaussian.
The detection of the representation’s structure, however, is less

straightforward, as is well-known (19, 21). Because in our problem
the exogenous processes are not independent of the noise, popular
techniques such as orthogonal least-squares and error reduction
ratios (see, e.g., ref. 19 and references therein), do not work. We
use the following criteria for selecting the structure of the
representation: (i) it should fit the long-term statistics of the
resolved variables, such as the mean and autocorrelation func-
tion; (ii) as the size of the data increases, the estimated pa-
rameters should converge; and (iii) the estimated parameters
should reflect features of the resolved variables, such as sym-
metry properties.
It is of interest to relate the NARMAX representation to the

Mori–Zwanzig (MZ) formalism (4, 5, 27, 28). The overall setting
in the MZ representation is the same as here: one has data α for
the x variables, and one samples data β for y from a given initial
probability density function (pdf). The MZ formalism creates the
approximation R0ðxÞ in Eq. 3 by conditional expectation:

R0ðxÞ=E½Rðx, yÞjx�,

where E½ajb� is the expected value of a with respect to the
initial measure given b. When the system is ergodic and the
initial pdf for β is the invariant measure conditioned by α, this
is the best least-squares approximation of Rðx, yÞ by a function
of x. The MZ formalism then yields an expression for zðx, yÞ in
Eq. 2 as a sum of a noise and a non-Markovian memory/dis-
sipation term, corresponding to ξn+1 and Φn+1 in Eq. 7; note
that in [3] R0 is not restricted to the MZ recipe. The MZ
expressions are exact, and prove the need for the representation
of z to take the memory into account by including information
from earlier steps.
Once the initial data yð0Þ= β have been sampled, the MZ

equations are deterministic; the MZ formalism proposes to
follow in time one particular sample path of the system. For a
chaotic system, such as the one discussed in the next section,
this may not be computationally feasible. The representation
here looks for sample paths of a stationary stochastic process
whose statistics agree with the statistics defined by the equa-
tions of motion. This is a related but less ambitious and more
feasible task.
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The evaluation of the various terms in the MZ formalism is
difficult; as far as we know, there is only one case in the literature
(29) where it has been successfully carried out in full for a
nonlinear problem that is not completely trivial. The MZ for-
malism is a useful starting point for analytic approximations (29,
30), but it is difficult to use it to construct reduced models from
data when suitable analytic approximations are not available.
The formalism here is a more tractable way to use data for di-
mension reduction, and generalizes the MZ formalism to a broader
class of approximations.
There is a large literature on data-based dimension reduction.

In refs. 8, 31, the noise z is represented as the sum of an ap-
proximating polynomial in x obtained by regression and a one-step
autoregression; the details are in the next section where we
compare our results to those in refs. 8, 31. The shortcomings of
this representation as a general tool are that it does not allow z to
remember past values of x, and that the autoregression term is not
necessarily small, making it difficult to solve the equations accu-
rately. Furthermore, in refs. 8, 31, numerical values of a continuous
z are obtained by finite differences. In refs. 9, 14, the noise is
represented by a conditional Markov chain that depends on both
current and past values of x; the Markov chain is deduced from
data by binning and counting, assuming that exact observations of z
are available. It should be noted that the Markov chain represen-
tation is intrinsically discrete, making this work close to ours in
spirit. In ref. 32 the noise is treated as continuous and represented
in a form that is partly analogous to the NARMAX representation
once one translates from the continuum to the grid. An earlier
construction of a reduced approximation can be found in ref. 12,
where the approach was not yet fully discrete. Other interesting
related work can be found in refs. 33–36.

Lorenz 96 Equations
The Lorenz 96 equations (37) are a set of chaotic differential
equations that is often used as a metaphor for the atmosphere. It
has been widely used as a test bench for various dimension re-
duction and stochastic parametrization methods (8, 9, 14, 31,
38). Following ref. 14, we use the following formulation of the
equations:

d
dt

xk = xk−1
�
xk+1 − xk−2

�
− xk +F + zk,

d
dt

yj,k =
1
«

�
yj+1,k

�
yj−1,k − yj+2,k

�
− yj,k + hyxk

�
,

with zk = hx=J
P

jyj,k, and k= 1, . . . ,K, j= 1, . . . , J. The indices
are cyclic, xk = xk+K , yj,k = yj,k+K and yj+J,k = yj,k+1. The system is
invariant under spatial translations, and the statistical properties
are identical for all xk. The formulation here is equivalent to the
original formulation by Lorenz (e.g., refs. 9, 38); the parameter «
measures the time-scale separation between the resolved vari-
ables xk and the unresolved variables yj,k. We set «= 0.5, so that
there is no significant time-scale separation between resolved and
unresolved processes, as is both more realistic and more difficult
to handle for parametrizations (see ref. 38 and references therein).
The other parameters are K = 18,  J = 20,  F = 10,  hx =−1, and
hy = 1. The ergodicity of the Lorenz 96 system has been

numerically verified in earlier work (38) and we do not revisit
this issue.
In the following section we present numerical results produced

by our NARMAX scheme and compare them to those in ref. 8
labeled POLYAR (polynomial regression and autoregression).
We do not compare with the results of ref. 14 because they re-
quire exact observations of z. In ref. 8, the continuous z is esti-
mated by finite differences:

zkðtÞ≈ xkðt+ δÞ− xkðtÞ
δ

− xk−1
�
xk+1 − xk−2

�
+ xk −F.

Then a polynomial regression of the form zkðtÞ=PðxkðtÞÞ+ ηkðtÞ
is used to fit the data fxkðnδÞ, zkðnδÞg, where PðxÞ is an approx-
imating polynomial obtained by least squares, and ηkðtÞ is a
one-step autoregression [AR(1)] with parameters estimated
from the time series zkðnδÞ−PðxkðnδÞÞ, for n= 1,2, . . . . . This
leads to the following reduced stochastic equation:

d
dt

xk = xk−1
�
xk+1 − xk−2

�
− xk + F + PðxkÞ+ ηk, [8]

where ηk is an autoregression of the form

ηkðt+ δÞ=ϕηkðtÞ+ σξkðtÞ, [9]

where ϕ,   σ are constants deduced from the data, and the ξkðtÞ are
independent identically distributed Gaussian random variable with
mean zero and variance 1, for each component k= 1, . . . ,K of the
equation. This reduced system is solved as follows: given the cur-
rent time vectors ðηkðtÞ  , xkðtÞÞ, the next time step ηkðt+ δÞ is
calculated from [9], and then xkðt+ δÞ is computed by integrat-
ing [8] by a fourth-order Runge–Kutta method, with ηðtÞ kept
constant during each time step.
In the NARMAX scheme, we use the representation [7],

choosing one of the functions QiðxÞ to be RδðxÞ from the approx-
imation [3] and the others to be powers of x. This connects the
numerical scheme with the representation of the noise. We select
the structure and estimate the parameters as described earlier. The
parameters are the same for each spatial component, reflecting the
spatial symmetry of the equation. Each component of z remembers
only its own past and the past of the corresponding component of x.
The term Φn in Eq. 7 becomes

Φn = μ +
Xp

j=1

ajzn−j +
Xr

j=1

Xdx

l=1

bj,l
�
xn− j�l

+
Xs

j=1

XdR

l=1

cj,l
�
Rδ

�
xn− j��l +

Xq

j=1

djξn−j.

[10]

The determination of the numerical parameters in this repre-
sentation is part of the calculation and the values used are listed
in the next section.

Numerical Results
In the numerical runs, we generate data for xk by integrating
the full Lorenz 96 system with parameters ð«,K , J,F, hx, hyÞ=

Table 1. Estimated parameters in the POLYAR system

δ 5* 4 3 2 1 0 ϕ σ

0.01 −0.00002 0.0004 −0.0002 −0.0258 −0.3567 0.0529 0.9948 0.9397
0.05 −0.00003 0.0009 −0.0035 −0.0137 −1.0030 1.3919 0.7626 11.3857

*The column labeled j for j= 0, . . . , 5 contains the coefficient of x to the power j.
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ð0.5, 18,20,10, − 1,1Þ, using a fourth-order Runge–Kutta method
with time step 0.001. We consider two cases: one in which the
observations are made at intervals of δ= 0.01 and one in which
they are made at intervals δ= 0.05; the first case corresponds to a
case discussed in refs. 9, 14; in the second case, the data are slightly
sparser. In each case, we make observations at N = 5× 105 points;
this requires that the full system be integrated for 5,000 and 25,000
time units, respectively. In each case, Rδ comes from the fourth-
order Runge–Kutta method.
For the POLYAR equations of [8], a fifth-order polynomial is

used for both observation settings. Increasing the order further
produces small coefficients for the higher degree terms, which do
not reduce the variance of noise. The estimated parameters, i.e., the
coefficients of the polynomial and the parameters for the autore-
gression, for the first component x1 of x are shown in Table 1.
For the NARMAX equation [10], we estimated ðp, r, s, qÞ=

ð1,2,0,1Þ and ðdx, dRÞ= ð1,0Þ for the case δ= 0.01, and for the case
δ= 0.05, ðp, r, s, qÞ= ð1,1,1,0Þ and ðdx, dRÞ= ð3,1Þ. The estimated
parameters for x1 are shown in Table 2.
First, we compare the statistics of the solutions generated by

the two reduced systems with the statistics of the full system. We
integrate the reduced equations in both cases and obtain values
at 5× 105 points. We calculate the following quantities from the
reduced equations as well as from the full Lorenz 96 equations:
the mean, the SD, the pdf, the Kolmogorov–Smirnov statistic,
the autocorrelation function (ACF) of x1, and the cross-corre-
lation function (CCF) between x1 and x2. The pdf of x1 for the full
Lorenz 96 system is well reproduced by both reduced systems
when δ= 0.01; Fig. 1 (Top Left). In the sparser data case δ= 0.05
the NARMAX equations produce a much better pdf than the

POLYAR equations; Fig. 1 (Bottom Left). Table 3 displays the
mean, the SD, and the Kolmogorov–Smirnov statistic that com-
pare the cumulative distributions of the full Lorenz 96 system with
that of the reduced equations. The NARMAX system is more
accurate than the POLYAR system in both cases. The ACF and
CCF are well reproduced by both reduced systems when δ= 0.01;
Fig. 1 (Middle, Top Right). When δ= 0.05, however, the ACFs and
the CCFs reproduced by the POLYAR miss the amplitude of
oscillation and exhibit a phase shift from those of the full Lorenz
96 equations while the NARMAX system remains accurate; Fig. 1
(Middle, Bottom Right).
We now investigate how well a reduced system predicts the

behavior of the full system by calculating mean trajectories of the
reduced systems and comparing them with a true trajectory of
the full Lorenz 96 system, as follows. First we integrate the full
Lorenz 96 system for 10×N0 time units, and store the results as
N0 short trajectories of 10 time units each. For each short true
trajectory, we perform Nens integrations of the reduced systems
over 10 time units, starting all ensemble members from the same
several-step initial conditions as the corresponding full solu-
tion––several initial steps are needed to initialize η in POLYAR
and ξ in NARMAX. We do not introduce artificial perturbations
into the initial conditions, because the exact initial conditions for
x are known, and by initializing η and ξ from data, we preserve
the memory of the system so as to generate better ensemble tra-
jectories. We then average the solutions of the reduced equations in
each subinterval and compare these averages with the trajectories of
the full system by calculating the root-mean-square error (RMSE)

Fig. 1. pdf, ACFs, and CCFs of x1, produced by the full Lorenz 96 model, the POLYAR system, and the NARMAX system. (Top) Case δ= 0.01; (Bottom) case
δ=0.05. These statistics are better reproduced by the NARMAX system than the POLYAR system.

Table 2. Estimated parameters in the NARMAX model

δ a1 b1,1 b1,2 d1 μ σ2

0.01 0.9782 −0.1271 0.1132 0.9997 –– 0.0115 0.0004
a1 b1,1 b1,2 b1,3 c1,1 μ σ2

0.05 0.8879 −0.0712 −0.0002 0.0002 −0.0084 0.0556 0.0284

Table 3. Mean, SD, and the Kolmogorov–Smirnov statistic (D)

δ= 0.01 δ=0.05

Mean SD D Mean SD D

Lorenz 96 2.4506 3.5230 –– 2.3978 3.5222 ––

POLYAR 2.5335 3.3807 0.0183 2.6031 2.8564 0.0747
NARMAX 2.4113 3.5270 0.0055 2.4293 3.5402 0.0049
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and anomaly correlation (ANCR) between them; the former
measures the average difference between trajectories whereas the
latter measures the average correlation between them; the formulas
and their rationale can be found in ref. 14.
Results for RMSE and ANCR are shown in Fig. 2, where we

use N0 = 10,000, Nens = 1,5,20, and the number of steps where
initial conditions are imposed is n0 =maxf1, p, r, s, 2qg+ 1. In the
case δ= 0.01, the NARMAX reduction performs slightly better
than the POLYAR reduction. In the case δ= 0.05, the NARMAX
reduction provides a significant improvement over the POLYAR
reduction. For example, the forecast lead time at which the
anomaly correlation drops below 0.6 is extended from τ= 2 to τ= 4
in the case Nens = 20.

Conclusions
We have presented a discrete approach to data-based dimension
reduction and stochastic parametrization in which the problem is
consistently treated as discrete, obviating earlier difficulties in
estimating noise from measurements and in approximating re-
duced continuum equations. Within this discrete approach, we

have identified the reduced system via the NARMAX repre-
sentation. This generalizes earlier work, in particular by making
it easier to include memory effects in full. We have tested the
resulting algorithm on the Lorenz 96 system of equations, often
used as a test bench for dimension reduction schemes; our con-
struction did better than earlier work in reproducing the dynamics
and the long-range statistics of the variables of interest, most con-
spicuously in a problem where the data were sparse. We related our
representation to the MZ formalism and suggested that our
methods can be used to construct simpler data-based analogs of this
formalism. We expect the advantages of our modeling to become
even more marked as it is applied to increasingly complex problems.
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